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(57) ABSTRACT

A system and method for tomographic image reconstruction
using truncated limited-angle projection data that allows
exact interior reconstruction (interior tomography) of a
region of interest (ROI) based on the linear attenuation coef-
ficient distribution of a subregion within the ROI, thereby
improving image quality while reducing radiation dosage. In
addition, the method includes parallel interior tomography
using multiple sources beamed at multiple angles through an
ROI and that enables higher temporal resolution.
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INTERIOR TOMOGRAPHY AND INSTANT
TOMOGRAPHY BY RECONSTRUCTION
FROM TRUNCATED LIMITED-ANGLE
PROJECTION DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 61/025,470 filed Feb. 1, 2008. The complete
contents of that application is herein incorporated by refer-
ence.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under
grants EB002667, EM004287 and EB007288 awarded by
NIH/NIBIB. The government has certain rights in the inven-
tion.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to computed
tomography (CT) and, more particularly, to systems and
methods for exact interior reconstruction using improved
analytic continuation techniques and with the extension of
such techniques to instant tomography and across other tomo-
graphic modalities.

2. Background Description

Classic CT theory targets exact reconstruction of a whole
cross-section or of an entire object from complete projec-
tions, while practical applications such as medical CT, micro-
and nano-CT often need to focus on a much smaller internal
region of interest (ROI). Current CT theory cannot exactly
reconstruct an internal ROI only from truncated projections
associated with x-rays through the ROI because this interior
problem does not have a unique solution. When applying
traditional CT algorithms for interior reconstruction from
truncated projection data, features outside the ROl may create
artifacts overlapping inside features, rendering the images
inaccurate or useless. Moreover, specific problems remain for
pre-clinical imaging, as in the case of small animals (see
Wang, G., “Micro-CT scanners for biomedical applications:
an overview”, Adv. Imaging, 2001, 16: pp. 18-27). Although
there has been an explosive growth in the development of
cone-beam micro-CT scanners for small animal studies, the
efforts are generally limited to cross-sectional or volumetric
imaging at high spatial resolution of 20-100 um at large
radiation dose.

Traditional CT is necessarily associated with x-ray source
and/or detector scanning so that projections can be collected
from a sufficient number of orientations. Although the multi-
source strategy has been a natural solution to higher temporal
resolution CT and already used in the classic Mayo Clinic
Dynamic Spatial Reconstructor (see Robb, R. A., et al, High-
speed three-dimensional x-ray computed tomography: The
dynamic spatial reconstructor. Proceedings of the IEEE,
1983.71(3): p. 308-319, and Ritman, E. L., R. A. Robb, and
L. D. Harris, Imaging physiological functions: experience
with the DSR. 1985: philadelphia: praeger), the modern
Siemens dual-source cone-beam scanner (see Flohr, T. G, et
al, First performance evaluation of a dual-source CT (DSCT)
system. European Radiology, 2006. 16(2): p. 256-268), and
other systems, such an x-ray scanning mechanism remains
indispensible. The bulkiness of sources/detectors in limited
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2

physical space has previously made it impossible to collect
simultaneously a sufficient number of projections simulta-
neously.

The importance of performing exact image reconstruction
from the minimum amount of data has been recognized since
the introduction of CT scanning. A recent milestone was the
two-step Hilbert transform method (see Noo et al. “A two-
step Hilbert transform method for 2D image reconstruction”.
Physics in Medicine and Biology, 2004. 49(17): p. 3903-
3923), which was further expanded by Defrise et al. “Trun-
cated Hilbert transform and image reconstruction from lim-
ited tomographic data.” Inverse Problems, 2006. 22(3): p.
1037-1053.

Despite the impressive advancement of the CT technology,
there are still unmet, critical and immediate needs such as
those mentioned above for better image quality at lower doses
in many biomedical and other investigations.

SUMMARY OF THE INVENTION

An exemplary object is to provide a new method and sys-
tem for providing interior tomography.

Another exemplary object is to provide a system and
method for exact interior reconstruction is performed using
truncated limited-angle projection data.

Still another exemplary object is to provide instant tomog-
raphy where a ROI or VOI is provided without moving an
X-ray source on a path around a patient. For purposes of this
description the ROI will be understood to include VOI, and
vice versa.

According to one exemplary embodiment, the interior
problem can be solved in a theoretically exact and numeri-
cally stable fashion if a small sub-region within an ROI is
known. The reconstruction schemes only use projection data
associated with lines through a ROI or volume of interest
(VOI) to be reconstructed, and are referred to as interior
tomography, in contrast with traditional CT reconstruction,
which does not allow two-side data truncation. Interior
tomography enables faithful resolution of features anywhere
inside an ROI using data collected along x-ray beams probing
the ROI with knowledge of a sub-region (i.e., the linear
attenuation coefficient function on the sub-region) of non-
zero measure in the ROI. Exact knowledge of a sub-region
can often be assumed because in many cases the x-ray linear
attenuation coefficients of air gaps or voids, water, blood or
other liquid, or other calibrated structures such as implants is
known; more generally, a pre-scan (even in lower resolution)
can be used to provide such prior knowledge. Other forms of
knowledge may be also included and used along with the
interior reconstruction such as low-resolution images of the
ROI to be reconstructed.

According to another exemplary embodiment, novel cone-
beam techniques are developed which permit higher spatial
contrast and temporal resolution at less radiation dose. That
is, superior dynamic volumetric imaging is attained while
minimizing the radiation dosage and imaging time, making it
safer for patients and enabling more images to be taken with-
out compromising safety. Systems and methods use interior
tomography to provide instantaneous temporal resolution of a
small ROI without the need to move an x-ray source on a
trajectory around a patient, producing a “snapshot”, herein
referred to as ultrafast or instant tomography. In addition, the
user can easily move to another region of interest or “roam” to
re-position or enlarge such a snapshot, revolutionizing the CT
imaging paradigm. This reduced time for imaging will enrich
diagnostic information with improved temporal resolution,
and result in increased numbers of screening procedures that
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can be performed on an individual scanning apparatus pro-
viding addition benefits of reduced requirements for data
storage and cost savings.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed descrip-
tion of a preferred embodiment of the invention with refer-
ence to the drawings, in which:

FIGS. 1A to 1C are diagrams illustrating the interior
tomography concept solving the interior problem. FIG. 1A
shows conventional tomography allows exact reconstruction
of an object from a half-scan where every point of the object
is irradiated with x-rays from all directions. FIG. 1B shows
that it was proved impossible to reconstruct uniquely an ROI
if only the ROl is irradiated from all the directions (the inte-
rior problem). FIG. 1C shows systems and methods we devel-
oped previously where the interior problem can be exactly
and stably solved assuming a known sub-region of the ROI
using truncated Hilbert Transform data (Ye, Y., et al., A Gen-
eral Local Reconstruction Approach Based on a Truncated
Hilbert Transform. International Journal of Biomedical
Imaging, 2007, Article ID: 63634, 8 pages)

FIG. 2 is a diagrammatic illustration of a one-dimensional
(1D) setting for interior reconstruction of a region of interest
(ROI) with prior knowledge of a landmark.

FIG. 3 is a diagram showing Region Q bounded by a circle
CandacutD.

FIGS. 4A and 4B are diagrammatic illustrations of 1D and
two-dimensional (2D) interior tomography with truncated
limited-angle projections on a ROI.

FIG. 5 is a diagrammatic illustration of 1D interior tomog-
raphy of a ROI with prior knowledge of a landmark.

FIG. 6 is an example to demonstrate the interior recon-
struction using the configuration of FIG. 5. 6A is a recon-
struction from a complete dataset, where around the known
trachea we specific two regions A and B. 6B is the local
interior reconstruction only using the truncated data through
regions A or B.

FIG. 7 is diagram showing that limited-angle scanning of P
fromy(s,) to y(s,) along the curve y(s) points on the plane can
be written as P'=x',0,+x',0,.

FIG. 8 is a diagram illustrating limited-angle scanning of P'
from y'(s,) to y'(s,) along the curve y(s).

FIGS. 9A and 9B are diagrammatic illustrations of limited-
angle tomography showing setting that allows measurement
of (9A) C4(X',) from -1 to 1 and (9B) C¢(x',) under arescaling
of Tricomi’s truncated Hilbert inversion formula.

FIGS. 10A and 10B show regions in which (10A) the
support of f cannot be fully reconstructed by the limited-
angle tomography and (10B) the support of  may be fully
reconstructed using different vectors 6, and 0.

FIG. 11 show reconstructed head phantom images from
limited-angle projections. 11A is a reconstruction by the clas-
sic SART method; and 11B was reconstructed by our limited-
angle reconstruction technique utilizing compressed sensing
theory as well as prior knowledge.

FIG. 12 is a diagrammatic illustration of instant tomogra-
phy for cardiac imaging using the interior tomography
approach, wherein the detector size can be greatly reduced so
that many source-detector pairs can be fit together to focus on
a ROl for simultaneous collection of enough local projections
without any source scanning.

FIGS. 13A to 13G are a feasibility demonstration of inte-
rior reconstruction with a lung CT scan. FIG. 13 A shows the
global filtered back projection (FBP) reconstruction contain-
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ing an ROI bounded by a circle imposed on each image. FIG.
13B shows a magnification of the ROI. FIG. 13C shows the
local FBP after smooth data extrapolation. FIG. 13D shows
the local simultaneous algebraic reconstructive technique
(SART) with ordered subsets. FIG. 13E shows local recon-
struction via interior tomography. FIGS. 13F and 13G are
profiles along the horizontal and vertical lines within the
FIGS. 13B-13E. The display window is [-800HU, 700HU].

FIGS. 14A to 14D are a series of images demonstrating
instant interior reconstruction of an ROI with a realistic data
acquisition setup, sampled from a sheep lung scan using only
1 in every 20 projections in the full scan range. (14A) Global
FBP reconstruction from the complete data set is used as a
gold standard for the local reconstructions using (14B) FBP,
(14C) SART, and (14D) interior tomography techniques.

FIG. 15 is a series of images further demonstrating instant
interior reconstruction with a realistic data acquisition setup,
in which raw data was repeatedly sampled from a sheep lung
scan using only 1 in every 20 projections in the full scan
range, generating 20 reconstructions to synthesize a higher
quality snapshot.

FIG. 16 is demonstration for field of view (FOV) increment
using a parallel source-multiplexing scheme. (16A) A simple
example of source multiplexing where 36 x-ray focal spots
are distributed around a subject targeting a central ROI from
12 source segments of 3 focal spots per segment. In this
scheme, only one focal spot in each of the source segments is
turned on in one time slot, and the scan is finished in 3
consecutive time slots which can be done ultrafast such as
with the nano-tube based source array technology (REF); in a
more realistic 1 in every 4 projections was selected from the
sheep lung scan to simulate 290 x-ray sources around the
subject from 29 source segments of 10 focal spots per seg-
ment with (16B) the global FBP reconstruction from the
complete dataset as the gold standard; 16C-16E the local
reconstructions using FBP (after smooth data extrapolation),
SART (with ordered subsets) and interior tomography tech-
niques, respectively. The display window is [-800HU,
700HU].

FIG. 17 are practical system configurations. (17A) Triple
line/arc-sources are symmetrically arranged, along with the
corresponding detector arrays around an object to be recon-
structed, and (17B) all the sources are grouped on one side
while the detectors on the other. On the source segment,
multiple focal spots can be turned on simultaneously to utilize
the detectors effectively. Multiplexing of the available focal
spots will collect adequate fan-beam or cone-beam projection
data for limited angle interior tomography. Note that the Tuy
condition is satisfied in a centralized ROI if its size is suffi-
ciently small. Practically, an excellent image quality can be
achieved in a relatively small central ROI. Other polynomial
or curved arrangements of sources and detectors can be made
in the same spirit of this invention.

DETAILED DESCRIPTION
Section I
Interior Tomography with Prior Knowledge

Interior tomography becomes possible if one knows the
object function f(x) in a sub-region. The algorithms use the
following mathematical techniques. The first is a formula
proved by Gel’fand-Graev (see Gelfand, I. M. and M. L.
Graev, Crofton Function And Inversion Formulas In Real
Integral Geometry. Functional Analysis And Its Applications,
1991. 25(1): p. 1-5) which was later rediscovered by Pack-
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Noo-Clackdoyle (see Pack, J. D., F. Noo, and R. Clackdoyle,
Cone-beam reconstruction using the backprojection of
locally filtered projections. IEEE Transactions on Medical
Imaging, 2005. 24(1): p. 70-85).

Theorem I- (Gel'fand- Graev 1991)

dy

21 5
The filtered data PVf —Ds(¥(g), 0(s, x, 7)) -
o 0q 4=s siny

can be expressed as a Hilbert transform.

In the 1D setting, the Hilbert transform can be written as

(G.1I-1)

dx
2= —Pv f i (x) = (HLN(),
31

if f(x) is supported on [c,,c,]. Note that the PV integral here
becomes an ordinary integral if y&[c,,c,]. Because f(x) is
continuous, (I-1) actually defines a single-valued analytic
function for complex variable y&|c, ,c,]. The next method we
will need is an inversion formula for truncated Hilbert trans-
form.

Theorem -2 (Tricomi 1951)

f(x) can be recovered by 3.-2)
1 d

VI f(x)=C; + - PVf SN2 y—yx
L _

1t
:;Ilf(x)dx.

(see Tricomi, F. G., On the finite Hilbert Transform Quarterly
Journal of Mathematics 1951. 2(1); p. 199-211) (Here we set
¢,=-1 and c¢,=1 for simplicity.)

Assume that g(x) is measured on [c;, ¢,], unknown on [c, ¢5]
and [c,, ¢,], and f(x) is known on [c;, c5], where with
¢,<Cc5<C5<Cc4<C, (see FIG. 2). ¢,=-1 c,=1

The function

GB.L3)

d
he) = —PVf SONT— 2 —+ IDVngm«/l—yZy—_yZ

cannot be evaluated because g(x) is unknown on [c,, ¢,| and
[c4, c5]. Its nth derivative is

Az = ! f
7!' cl

'd
gVI—y 22

(y Z)n+1

'd
gyVT—y? =2

— (v — oyl

+_f
ﬂc

Consequently, h(x) is analytic on Cwith cuts along[c,, c,] and
[c4, c5]. By Tricomi’s

Theorem [-2, 3.-4)
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6

-continued

d
V1I-22 f@)=Cr+— PVf g(y)\/l—yzy—_yzw(z)-

Thus h(x) is known on [c;, 5], because f(x) is known on [c;,
¢5] and g'(x) is known on [c,, c,].

Now we need the third technique: An analytic function h(z) is
uniquely determined by its values on [c,, c,]. Analytic con-
tinuation of h(z) from [c,, c5] to [cs, ¢,] will reconstruct f(x)
on [cs, c,] by (I-5) below.

Theorem 1-3 (Ye-Yu-Wei-Wang 2007) Let
-1=c¢,<c,<cs<c,<c,=1. Suppose that f(x) is smooth of com-
pact support on [-1,1], f(x) is known on [c,, c5], g(X) as in
(I-1) is known on [c3, ¢,] and Cy as in (I-2) is known (FIG. 2).
Then f(x) can be uniquely reconstructed on [cs, c,] by

+h(x) B.LS)

VI-x2 f(x)=Cp+ = PVf gVl -y?

using analytic continuation of h(z) as defined in (I-3) from
[c5, 5] to [cs, c4].

This analytic continuation method was first used by Defrise-
Noo-Clackdoyle-Kudo (see Defrise, M., et al., Truncated
Hilbert transform and image reconstruction from limited
tomographic data. Inverse Problems, 2006. 22(3): p. 1037-
1053), to extend earlier results on limited-data reconstruction
by Noo-Clackdoyle-Pack (see Noo, F., R. Clackdoyle, and J.
D. Pack, 4 two-step Hilbert transform method for 2D image
reconstruction. Physics in Medicine and Biology, 2004.
49(17): p. 3903-3923). Similar results were announced by
Kudo (see Kudo, H. Analytical image reconstruction methods
for medical tomography—Recent advances and a new
uniqueness result, in Mathematical Aspects of Image Pro-
cessing and Computer Vision 2006), also proved indepen-
dently by Kudo-Courdurier-Noo-Defrise (see Kudo, H., et
al., Tiny a priori knowledge solves the interior problem in
computed tomography. Phys. Med. Biol., 2008. 53(9): p.
2207-2231) and Courdurier-Noo-Defrise-Kudo (see Courdu-
rier, M., et al., Solving the interior problem of computed
tomography using a priori knowledge. Inverse Problems,
2008. 24: p. Article ID 065001, 27 pages).

As in Defrise-Noo-Clackdoyle-Kudo (Defrise, M., et al.,
Truncated Hilbert transform and image reconstruction from
limited tomographic data. Inverse Problems, 2006. 22(3): p.
1037-1053), the stability of the interior reconstruction above
can be proved using Nevanlinna’s principle. To see use this
principle, consider the region €2 bounded by a circle C and a
cutD, as in FIG. 3. Assume that an analytic function f(z) in Q
is bounded on the boundary: |f(z)| =M on C, If(z)|=e on D,
for a positive constant M and an arbitrarily small positive €.
The goal is to get a bound for f(z) on the dotted line segment.

Theorem 1-4 (Nevanlinna’s principle) Under the above set-
ting, there is a harmonic function w(z) on € such that wl,=0,
wl~1 and

If ()| =M(e/M) =@

for all z in Q.

Therefore on the dotted line segment, the bound for f(z) is
close to € at the end next to D but becomes a small fractional



US 7,697,658 B2

7

power of e toward the other end. This is the same situation as
the 1D interior tomography with prior knowledge. In FIG. 2,
on the ROI [c4,c,], the error bound for reconstructed f(z) is
close to € at the end c5, but becomes a small fractional power
of e toward c,, where >0 is a bound for measurement error.

Section 11

SVD Method with or without Chord Averaging

We previously demonstrated the ability to solve the prob-
lem of interior tomography using a projection-onto-convex-
sets (POCS) method (see FIG. 1) (Ye, Y., et al., A General
Local Reconstruction Approach Based on a Truncated Hilbert
Transform. International Journal of Biomedical imaging,
2007. 2007: p. Article ID: 63634, 8 pages). We subsequently
developed a singular value decomposition (SVD) methodol-
ogy for interior tomography that is computationally superior
to the POCS method and provides a comparable image qual-
ity (Hengyong Yu, Yangbo Ye and Ge Wang; Interior recon-
struction using truncated Hilbert transform via singular value
decomposition; Journal of X-ray Science and Technology,
16(4):243-251, 2008).

Now, let us describe a SVD method coupled with the chord
averaging technique that retains the advantage of computa-
tional superiority over POCS while reducing noise compared
to the prior SVD methodology.

In practice, the 1D function g(y) can be obtained on a
generalized Pl-line/chord by backprojecting the weighted
differential projection data. Once g(y) is known on (c;,c,),
F(x) can be recovered. We adapted a projection-onto-convex-
sets (POCS) method to reconstruct 1D f(x) iteratively from
truncated data g(y) and produced promising numerical results
(seeYe, Y., etal., 4 General Local Reconstruction Approach
Based on a Truncated Hilbert Transform. International Jour-
nal of Biomedical Imaging, 2007, Article ID: 63634, 8 pages)
but it was computationally very expensive and sensitive to
noise.

On a discrete grid, g(y) is sampled along a chord through
the known sub-region (c;,c;) in the ROI as B=[b,b,, . . .,
b7, and £(x) on the chord as A=[a,,a,, . . . aQ]T. Then, the
Hilbert transform is represented as B=HA, where H is a
coefficient matrix corresponding to the Hilbert transform ker-
nel. Because A is partially known, A can be divided into the
known and unknown parts A, and A,. Accordingly, H is
divided into H, and H,,. Hence, B=B-H,A,=H_ A, which
represents a linear inversion problem. Because all the rows of
H,, are formed by the truncated discrete Hilbert transform
kernel, one can utilize the properties of H,, to solve the
unknown A, from the known B. The unknown A, includes
two parts: the part A, within the ROI to be exactly recon-
structed and the part A, outside the ROI which cannot be
exactly recovered. The goal is to ensure that A, is recon-
structed as precisely and robustly as possible. Without loss of
generality, a regularization scheme can be expressed as

A, = avgmin(|[B - H A +E1LAR), (- 1)

Ay

where L and £ are a regularization constraint and a relaxation
coefficient respectively. Our initial SVD solution is to imple-
ment the so-called Tikhonov regularization with a unit diago-
nal constraint matrix L. The SVD method is a closed-form
solution to interior tomography. Our experiments show that
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the SVD method is >200 times faster and produces compa-
rable image quality relative to the POCS method (7 minutes
versus 1,500 minutes).

To suppress image noise, the reconstruction at a particular
point is obtained by averaging the results at that point through
different chords. Thus, we call our methodology a singular-
value-decomposition and chord-averaging approach for inte-
rior tomography. This seemly simple method actually allows
us to transfer the reconstruction strategy from a 1D based
scheme to a setting of higher dimensions. While the above
description is based on measured the truncated Hilbert trans-
form, similar procedures can be formulated based on mea-
sured differences of two Hilbert transforms, which is
described below (Ye Y et al., “Exact interior reconstruction
from truncated limited-angle projection data”, International
Journal of Biomedical Imaging 2008: 2008:427989; Yangbo
Ye, Hengyng Yu and Ge Wang, Interior Tomography: Math-
ematical Analysis, to appear in special volume “Biomedical
Mathematics: Promising Directions in Imaging, Therapy
Planning and Inverse Problems” (Editors: Yair Censor, Ming
Jiang and Ge Wang), Proceedings of Huangguoshu Interna-
tional Interdisciplinary Conference on Biomedical Math-
ematics on Nov. 6, 2008).

Section 111

Partial Limited-Angle Interior Tomography

Assume that there are three points a, b and ¢ on a chord L.
from y(s,) to y(s,) as in FIG. 4(a). Assume that f(x) is known
on L between a and b. Suppose that the projection data are
known for any se[s,,s,] and any xel. between a and b. Also
suppose that the projection data are known for any se[s, s, |
and for any xel. between b and c. In other words, we have 180°
projections on the region where f(x) is known but only lim-
ited-angle projections on the ROI. Since the segment of L.
between a and ¢ may be contained in the support of f(x), this
is an interior tomography problem with truncated limited-
angle projections. Our goal is to reconstruct f(x) on L
between b and c.

Theorem I1I-1 (Ye-Yu-Wang 2008) With the setting as above
as in FIG. 4(a), f(x) can be uniquely reconstructed on L
between b and c.

The setting of this problem can be easily generalized to 2D
and 3D. Inthe 2D setting as in F1G. 4(b), x-ray projections can
be focused on the subregion Q, where f(x) is known. Our
algorithm can be applied to reconstruct f(x) uniquely in a
neighborhood Q of 2,,.

A new technique used in the proof of Theorem III-1 is the
integral of Cauchy’s type

H@) = PV fb W) dy @.II-1)
e ¥z

Here for H(z) for ze[a, b] given by the Cauchy principal value
of the integral in (III-1), while on Cwith a cut on [a, b] the
integral is an ordinary integral. Hence H(z) is a single-valued
analytic function on Cwith a cut on [a, b].

Theorem I11-2 (The Plemelj-Sokhotski formula) Let f(z) be
defined as in (III-1) for any zeC. Then for any xe[a, b], we
have
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1 1 _
Hx) = 5 lim H() + 5 lim H2). @-2)

Imz>0 1mz<0

We remark that because (I11I-2) is used in the proot of Theo-
rem III-1, Nevanlinna’s principle cannot be used to prove
stability of the reconstruction in Theorem I1I-1. In fact, (I11-2)
gives us values of the PV integral in (III-1) using the behavior
of the analytic function f(z) approaching to its boundary [a,
b]. This is a different situation to FIG. 3 where the dotted line
segment is inside the region of holomorphy.

The limit formula (III-2) can also be used to extend the results
in Theorem I1-3. In fact, from the discussion above, we know
that the function h(z) is a single-valued analytic function on
Cwith cuts along [c,, ¢,] and [c,, ¢,] and is uniquely deter-
mined by its values on [c,, ¢,]. By Theorem II1-2, for any x in
[Cls C2] and [045 Cz]s

1 1 _
heo) = 5 lim @)+ 5 lim A2, @I-3)

Im >0 Im z<0

Therefore h(x) is known on [c,, ¢,] and [c,, ¢,] by (III-3).
Substituting these known values of h(x) on [¢c,, ¢,] and [c,, ¢, ]
into (I-5), we can now uniquely reconstruct f(x) on [c;, C,]
and [c,, c,] because Cy and the PV integral in (I-5) are known
for any x. This result is summarized in the following theorem.

Theorem I1I-3 Let —1=c, <c,<c5<c,<c,=1. Suppose that f(x)
is smooth of compact support on [-1,1], f(x) is known on [c,,
¢s], g(x) as in (I-1) is known on [c,, c4], and C; as in (I-2) is
known (FIG. 2). Then f(x) can be uniquely reconstructed on
the whole support [-1,1] by (I-5) using analytic continuation
of'h(z) as defined in (I-3) from [c,, 5] to [cs, c,] and by the
limit formula (I11-3) to [c,, ¢c,] and [c,, c,].

The setting in FIG. 2 for Theorems I-3 and III-3 is only a
simplified illustration of the applicable general case. For
instance, these theorems can be trivially extended to the case
when there is an interval between the ROI and the interval on
which f(x) is known.

Theorem II1-4 Let —1=c,<c,<cs<cs<c,<c,=1. Suppose that
F(x)is smooth of compact support on [-1,1], f(x) is known on
[c5, ¢5], g(x) as in (I-1) is known on [¢.,, ¢5] and [¢g, ¢,] and Cy
as defined in (I-2) is known (FIG. 5). Then f(x) can be
uniquely reconstructed on the whole support [-1,1] by (I-5)
using analytic continuation of h(z) as defined in (I-3) from
[cs, c5] to [cq, c4] and by the limit formula (I11-3) to [c,, ¢,],
[¢s, ¢s] and [cy, €.

To perform the limited angle interior reconstruction, we
canuse a POCS scheme using truncated data through an ROL.
For that purpose, the reconstruction can utilize the following
constraints for the convex set: (1) projections and associated
Hilbert transform data and/or differences of two Hilbert trans-
forms; (2) known prior information; (3) non-negativity.

To demonstrate the feasibility of our algorithm, we per-
formed a simulation based on the CT experiment with a living
sheep, which was approved by Virginia Tech IACUC com-
mittee (exempt review). The chest of a sheep was scanned in
fan-beam geometry ona SIEMENS 64-Slice CT scanner (100
kVp, 150 mAs). The radius of the x-ray source trajectory was
570 mm. There were 1160 projections uniformly collected
over a 360° range, and 672 detectors were equi-angularly
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distributed per projection. The radius of the field of view
(FOV) was 250.5 mm. First, an entire 290.56 mm by 290.56
mm cross-section was reconstructed into 1024x1024 pixels
using the popular FBP method from complete projections.
Second, a trachea in which we already knew the CT number
of the internal air was selected in reference to the recon-
structed image. Around the trachea, we specified a circular
ROI A of radius 80 pixels and kept only the projection data
through the ROI. Meanwhile, we specified another circular
ROI B of radius 80 which does not interact with ROI A and
keep the projection data trough ROI B too. The results are
shown in FIG. 6.

Section IV

Limited-Angle Interior Tomography

Theorem III-1 is not a truly limited-angle reconstruction,
because the line segment ab in FIG. 4(a) and subregion Q,
need x-ray projections covering 180°. In this section, we
report a new result on limited-angle tomography. First we
need Gel’fand-Graev’s formula (see Gelfand, I. M. and M. L.
Graev, Crofton Function And Inversion Formulas In Real
Integral Geometry. Functional Analysis And Its Applications,
1991. 25(1): p. 1-5), which was rediscovered by Pack-Noo-
Clackdoyle (see Pack, J. D., F. Noo, and R. Clackdoyle,
Cone-beam reconstruction using the backprojection of
locally filtered projections. IEEE Transactions on Medical
Imaging, 2005. 24(1): p. 70-85).

Theorem IV-1 (Gel’fand-Graev’s formula) Let y(s),
s, =s=s,, be a smooth scanning curve, P a point, and 0, be the
unit vector from y(s;) to P (FIG. 7). Then

ds s G.IV-1)

2 d Ds(s, P hy'
L ah (s, P—y(s)+ hy'(s) "

Dy(sz, P=y(s2)) = Dy(s1, P=y(s1)) =

1 P-1f 1 P-1f
—PVf 1Pt ’”m--;ovf P18 4.
T Y 13 T Y t

When 8,=-0,, the two integrals on the right side of (IV-1) can
be combined into one integral and the last two terms on the
left side of (IV-1) cancel each other. The resulting formula

ds = (.IV-2)

2 d
—D P- hy'
fSl ah £ (s, Y(s) + hy'(s)) "

2 P10
—Pvf [P 4
Fid XY I3

is indeed Theorem I-1. (IV-2) is the way how Gel’fand-Graev
and Park-Noo-Clackdoyle applied (IV-1) to reconstruction
problems. Note that the line segments from y(s;) to P and
from y(s,) to P become a single chord when 6,=-6,.

What we do is to use (IV-1) without setting 0,=-0,. To this
end, let us reformulate the setting in FIG. 7. We assume that
the curve y(s), s,=s=s,, is a planar curve. Since 0, and 0,
span the plane, the point P can be written as P=x,0,+x,60,.
Similarly, other points on the plane can be written as
P'=x',0,+x',0, (FIG. 8). InFIG. 7, Ky(s1, 1), Ky(s¥,2) and P
determine a plane, while the curve y(s) may be a curve in the
3D space. Here, we will only consider the 2D case by assum-
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ing that y(s) is a planar curve and P is on the plane determined
by y(s). The vectors 8, 6, form a basis of R? so that we can
write P=x,0,+x,0, uniquely (FIG. 7). Then the right side of
(IV-1) can be written as

(.IV-3)

1 [ 6, — 10
—PVf F (X101 + 220, fz)d[_
T J® r

1 [ 6, — 10
_Pvf F (X101 + 220, tl)d[:
T JR r

6, — 16
(202 tl)d[

1 0, - 10 1
—PVf Ll =10 4 _Lpy
Fid = s 3 I+x

I+Xx2

According to (IV-1), (IV-3) can be computed from projec-
tions along y(s). Fix 0, 0,. Then

1 10 -16) 1
Lpy [ Lwab—t)y Lpy

x50, — 16
_ f(22 ) It
T . I+ x T

I+ x]

(5.IV-4)

£

can be measured for any x', and x', such that P'=x', 0, +x',0, is
inside the region in FIG. 8. In fact, (IV-4) can be obtained
from projections from y(s';) to y(s',) in FIG. 8. Note that in
(IV-4), the first term is a Hilbert transform in x',, while the
second term is a Hilbert transform in X', . Those two terms are
integrals of Cauchy’s type, and hence define two analytic
functions of x',eC and x',eC, respectively. This observation
may lead to various reconstruction strategies.

As one example, let us consider the settings in FIG. 9. We
can find x, such that whenever X', =x,, f(x',0,-t6,)=0 for any
t. Therefore the first term in (IV-4) vanishes for x', when
x', =X, and hence

1 40, — 16, 1
__pv Md[:——PV |

(x50, — 1)) g BIV-5)
b3 = I+ x] b3 =

Xy -1

= 86,6, (¥], X3)

is known for x', when x'; =x,,.

Applying Tricomi’s truncated Hilbert inversion formula
(I-2) to (IV-5) along the line L in the 0, direction, we can
express f(x';0,+x',0,) after suitable rescaling:

V1—x2 F(x6) +x36) = ©.Iv-0)
L ! , dy
Crty+ 2PV [ gl VT3 2
i 1 y—=X1
for any x',, where
(5.IV-7)

1 1
Criy =+ [ fiior 4o
-1

If we assume that the support of f(x',0,+x',0,) as a functions
of x'; is contained in [-1,1] for any x', then (IV-7) can be
measured (FIG. 9a). Recall that g6,0,(x';, X',) is known for
X', =X,. Then we can rewrite (IV-6) as
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1=3f SO0 + 340 = o)+l ¥ + I o), OTVD)
where
, 01 0 o— dy Iv-
hl(X1,X2):_PVf 80,0, (- )V =y ——, CI9
n 1 y—=Xx
R ) dy 5.IV-10
ha(xp, x3) = ;Pvf 86,0, (v, X))V 1 =32 P ( )
X0 -

Here h, (x';,x',) is known for any x', ,x',eC, because g8, 0,(y,
x',) is known for any y=x,,. Since it is given by a Cauchy type
integral, h,(x'; ,x',) is an analytic function of x'; on C with a
cut along [-1, X,]. On the other hand, h,(x', ,x',) is unknown
because g0,0,(y,x',) is unknown for y>%,. h,(x', ,x',), how-
ever, is an analytic function of x'; on C with a cut along [x,, ,].
By (IV-8),

hy(x'x '2):\/1——95’1232(95 101+x50,)-Cy(x) -k (¥',x"5) (5.Iv-11)
is known on [-1,x,], because f(x',0,+x',0,) vanishes on [-1,
Xo]- The known values of h,(x',x',) on [-1,x,] uniquely
determine the analytic function h,(x', ,x',) of x',€C with a cut
along [x, ,]. What we need are values of h,(x', ,x',) on the cut
[%o.;], which are given by Theorem I1I-2:

1 -
o), %) = 5 GIV-12

1
lim ha(z, x5) + = lim ha(z, X5).
2 o] 2

Im >0 Imz<0

Substituting known values of h,(x';,x',) in (IV-12) into (IV-
8), we can finally reconstruct f(x', 0, +x',0,) forx' €[x, ;] and
any x',.

The reconstruction formula (IV-7-IV-12) needs a suitable
scaling in the 6, direction (FIG. 9). Since we need to know
C;(x'5) as in (IV-7), we have to rescale 0, so that the support
of f(x',0,+x',0,) contained in K[-01,1, 0, 1]. It is also pos-
sible to rescale the reconstruction formulas (IV-6) (FIG. 95).
The results are similar to those from rescaling 0,. If the
support of f is large, we may be able to reconstruct f on its
whole support or a portion of it by changing vectors 0, and 0,
(FIG. 10).

Theorem IV-2. Let y(s), s, =s=s,, be a smooth planar scan-
ning curve, and let 8, and 6, be two non-parallel unit vectors
asinFIGS. 9 and 10. Fix an origin O of the plane and write the
end points of y(s) as linear combinations of 6, and 6,: y(s))
=X,0,+y,0,. Assume the support of the object function f does
not touch the scanning curve. Then f(x',6,+x',0,) can be
uniquely reconstructed for any x';, x',, with x', lying between
y, and y, by (IV-7)-(IV-12) after suitable rescaling.

This is a new proof of Hamaker’s classical result (see
Hamaker, C, et al., The Divergent beam X-ray transform.
Rocky Mountain Journal of Mathematics, 1980. 10(1): p.
253-283).

To verify the theoretical results of limited-angle tomogra-
phy, we developed a numerical interior tomography algo-
rithm in an iterative framework. The algorithm consists of two
major steps. In the first step, the ordered-subset simultaneous
algebraic reconstruction technique (OS-SART) (see Wang,
G. and M. Jiang, Ordered-Subset Simultaneous Algebraic
Reconstruction Techniques (OS-SART). Journal of X-ray Sci-
ence and Technology, 2004. 12(3): p. 169-177) was used to
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reconstruct a digital image based on all the truncated local
limited-angle projections. In the second step, compressive
sensing techniques (see Donoho, D. L., Compressed sensing.
Ieee Transactions on Information Theory, 2006. 52(4): p.
1289-1306, and Candes, E. J., J. Romberg, and T. Tao, Robust
uncertainty principles: Exact signal veconstruction from
highly incomplete frequency information. leee Transactions
on Information Theory, 2006. 52(2): p. 489-509) were used to
minimize the total variation to improve the reconstructed
image quality based on the Hilbert transform constraints.
These two steps were iteratively performed in an alternating
manner. Our algorithm was numerically implemented in Mat-
Lab on a PC (1.0 Gigabyte memory, 2.8 G Hz CPU). While
the basic structure was constructed in MatLab, all the com-
putationally intensive parts were coded in C, which was
linked via a MEX interface. A maximal iteration time was set
to stop the main loop.

In our numerical simulation, we assumed a circular scan-
ning locus of radius 57.0 cm and a fan-beam imaging geom-
etry. We also assumed an equi-spatial virtual detector array of
length 20.0 cm. The detector was centered at the system
origin and made always perpendicular to the direction from
the system origin to the x-ray source. The detector array
included 600 elements, each of which is of aperture 0.033 cm.
This scanning configuration covered a circular FOV ofradius
10.0 cm. For a quarter scanning turn (90 degree), we equi-
angularly collected 400 projections. The reconstructed object
was a 2D modified Shepp-logan phantom (see Shepp, L. A.
and B. F. Logan, The Fourier Reconstruction of a Head Sec-
tion. IEEE Transactions on Nuclear Science, 1974. NS21(3):
p. 21-34) whose radius was also 10.0 cm. This phantom is
piecewise constant and includes a set of smooth ellipses. To
verify the proposed algorithm, we initially only performed
the OS-SART reconstruction, then introduced the regulariza-
tion of the total variation and Hilbert transform. Both of the
reconstructed images are in a 256x256 matrix covering a
FOV of radius 10 cm (see FIG. 11). As seen in FIG. 11, the
proposed algorithm has a better performance than OS-SART
technique.

Section V
Instant/Ultrafast Tomography

Another improvement to our interior tomographic tech-
niques is an instant tomography technique which relies on the
interior tomography approach described above. This instant/
ultrafast tomography methodology is described in greater
detail below.

With interior tomography a small ROI can now be irradi-
ated with much narrower beams, meaning that smaller detec-
tors can be employed, and many x-ray source-detector pairs
can be assembled into a single system. Parallel data acquisi-
tion can be implemented using many compact X-ray sources
such as Carbon nano-tube-based x-ray sources (see Chang,
S., et al, Development of a carbon nanotube based low-LET
multi-pixel microbeam array. Rad. Res., 2006. 166(12): p.
658-659; also, private communications with Dr. Otto Zhou,
University of North Carolina), and corresponding small
detectors delimited by the x-ray shadow of the ROI.

This concept is illustrated by an example in FIG. 12, which
shows a concept of instant tomography for cardiac imaging.
With the interior tomography approach, the detector size can
be greatly reduced so that many source-detector pairs can be
fitted together to focus on an ROI for simultaneous collection
of enough local projections without any source scanning.
Hence, sufficient data can be acquired with a much shorter
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source scan or even without any scanning for unprecedented
“instant tomography” of such the small ROI, which can be
then roamed to visualize physiologic/pathological features
inside alarge space. Therefore, the resultant reconstruction of
the ROI will have a temporal resolution of nearly zero. Note
that gaps between detector elements 10 due to the x-ray
sources 12 would not cause additional data truncation, since
each source and detector pair (a pair being a source and
detector along a line passing through the body) is fixed. Fur-
ther, the X-ray beam or other radiant energy beam can be well
collimated and focused on an ROI inside the object such as a
patient so that the ROI will be projected into the interior of the
mini-detectors as is shown in FIG. 12.

If conventional sources are used in FIG. 12, they would
subtend a significant solid angle, leading to a reduction in
angular sampling, but emerging nano-tube or other innova-
tive sources may not yet immediately have a sufficient flux
required for demanding clinical applications. Potentially, our
scheme can be modified in a number of ways, such as distrib-
uting sources on a cylindrical surface around an ROI or VOI
in the patient, using source segments on which focal spots can
be sequentially fired (brighter than current nano-tubes),
improving nano-tubes’ brightness or even inventing sources
and detectors that allow new imaging possibilities.

For purposes of this application, performing interior
tomography in a parallel fashion will include both simulta-
neous and sequential firing of sources through the ROIL.

To demonstrate the feasibility of our instant interior tomog-
raphy, we performed a CT experiment with a living sheep,
which was approved by Virginia Tech JACUC committee
(exempt review). The chest of a sheep was scanned in fan-
beam geometry on a SIEMENS 64-Slice CT scanner (100
kVp, 150 mAs). The radius of the x-ray source trajectory was
570 mm. There were 1160 projections uniformly collected
over a 360° range, and 672 detectors were equi-angularly
distributed per projection. The radius of the field of view
(FOV) was 250.5 mm. First, an entire 290.56 mm by 290.56
mm cross-section was reconstructed into 1024x1024 pixels
using the popular FBP method from complete projections.
Second, a trachea in which we already knew the CT number
of the internal air was selected in reference to the recon-
structed image. Around the trachea, we specified a circular
ROI of radius 120 pixels and kept only the projection data
through the ROI. Third, interior tomography of the ROI was
performed with the same pixel size as for the global recon-
struction on 580 groups of parallel lines through the known
trachea region, and these groups are uniformly distributed
along the full scan range. Each group included 16 uniformly
distributed parallel lines. On each line, we converted the
reconstruction problem into a regularization problem in the
framework of a truncated Hilbert transform and determined
the solution by the singular value decomposition (SVD) (see
Hengyong Yu, Yangbo Ye and Ge Wang; Interior reconstruc-
tion using truncated Hilbert transform via singular value
decomposition; Journal of X-ray Science and Technology,
16(4):243-251, 2008). Finally, the redundant reconstruction
results were averaged to optimize the image quality. Note that
each of the parallel lines in the 580 groups serves as the chord
under reconstruction, on which a full-resolution backprojec-
tion and filtration (or full-resolution backprojection of differ-
ential data) were performed and averaged at each point in the
ROL

Our method produced an excellent ROI reconstruction that
was previously impossible and yet ran two orders of magni-
tude faster than the iterative approaches. For comparison
between our approach and existing approximate local recon-
struction algorithms, we adapted the popular filtered back-
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projection (FBP) algorithm and simultaneous algebraic
reconstructive technique (SART) (see G. Wang and M. Jiang,
Ordered-Subset Simultaneous Algebraic Reconstruction
Techniques (OS-SART). Journal of X-ray Science and Tech-
nology, 2004. 12(3): p. 169-177). The FBP was applied after
the truncated data were sinusoidally extrapolated to zero. The
SART was accelerated using the ordered-subset technique
(10 subsets and 60 iterations). The representative images and
profiles are shown in FIG. 13. Also, we examined key image
quality indexes of each reconstruction in FIG. 13, using the
global FBP reconstruction as the baseline. The results are
summarized in Table 1. The resolution was statistically esti-
mated orthogonally across the internal borders of the trachea
and its nearest disconnected major blood vessel as the full-
width-of-half-maximum (FWHM) of the line response func-
tion fitted into the Gaussian function (see F. J. Schlueter, et al.,
Longitudinal Image Deblurring In Spiral Ct. Radiology,
1994. 193(2): p. 413-418). The noise was computed as the
standard deviation o in a flat blood region. Clearly, interior
tomography performed much better than either of the com-
peting brute-force algorithms. Surprisingly, it performed
even better than the global FBP reconstruction in terms of
resolution and noise, most likely because the exact knowl-
edge of the trachea helped regularize interior tomography to
yield more favorable resolution and noise in the ROI around
the trachea.

TABLE 1

Algorithm comparison for interior reconstruction in terms of the mean
eITor €, Maximum error €,,,,, image resolution, and noise..

Noise

€ (HU) €, (HU) Resolution (mm) o (HU)
Global FBP Recon 0.0 0.0 1.540 341
Local FBP Recon 161.9 439.9 1.566 49.1
Local SART Recon 198.5 583.6 1.538 56.7
Interior Recon 84.6 434.8 1.487 21.0

Next, let us examine a data acquisition issue further for
instant tomography illustrated in FIG. 12. Using the same
sheep lung CT scan, the above simulation was repeated in a
realistic parallel fashion. The raw data was sampled from the
sheep lung scan using only 1 in every 20 projections in the
regular full scan. Assuming each projection corresponded to
an appropriate detector array segment, and the x-ray tubes
took up no room on the gantry, a centralized ROI of radius
15.4 mm (the gantry is assumed to be of radius 570 mm)
would be well illuminated. Then, 58 projections were uni-
formly selected from the 1160 views by discarding 19 pro-
jections in every 20 projections. With the same pixel size as in
the previous reconstruction, the ROI was of radius 54 pixels.
Then, interior tomography of the ROI was performed on 58
groups of parallel lines and each group included 22 uniformly
distributed parallel lines. The final results are shown in FIG.
14, where the SART result was produced after 200 iterations.
The global FBP reconstruction from the complete data set as
a gold standard, shown in FIG. 14A. The remaining 3 images
show 3 techniques for local/interior reconstruction: FIG. 14B
is the local reconstructions using the FBP (after smooth data
extrapolation), FIG. 14C is SART (with ordered subsets) and
FIG. 14D is interior tomography. The display window
remains [-800HU, 700HU] for each. Although the image
artifacts in FIG. 14 are more evident than that in FIG. 13,
these results support this prototypical instant tomography—
the perfect temporal resolution is indeed achieved. Unlike
popular tomosynthesis techniques, instant tomography
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allows symmetric data acquisition, avoiding major biases
from primary viewing directions associated with a tomosyn-
thetic scan. More importantly, it is very hopeful that next
generation reconstruction algorithms may produce much bet-
ter image quality from a limited number of projections than it
is possible now. For example, compressive sensing/sampling
theory suggests that reconstruction quality may be main-
tained after a dramatic reduction in the number of projections
(G. H. Chen, J. Tang, and S. H. Leng, Prior image constrained
compressed sensing (PICCS): A method to accurately recon-
struct dynamic CT images from highly undersampled projec-
tion data sets. Medical Physics, 2008. 35(2): p. 660-663; M.
Lustig, D. Donoho, and J. M. Pauly, Sparse MRI: The appli-
cation of compressed sensing for rapid MR imaging. Mag-
netic Resonance in Medicine, 2007. 58(6): p. 1182-1195; H.
Jung, et al., k-t FOCUSS: A general compressed sensing
framework for high resolution dynamic MRI. Magnetic
Resonance in Medicine, 2008, to appear).

An effective way to improve the image quality of instant
tomography such as that shown in FIG. 14D is to average
multiple instant snapshots of the same ROI. This idea is
demonstrated in FIG. 15, which also illustrates instant inte-
rior reconstruction with a realistic data acquisition setup. The
raw data was repeatedly sampled from the sheep lung scan
using only 1 in every 20 projections in the regular full scan.
The images in FIG. 15 show 20 reconstructions and their
average image. All display windows are [-800HU, 700HU].
Thekey is to acquire instant datasets independently and align
these datasets in a common coordinate system. In this context,
image registration techniques will play a critical role. Fur-
thermore, next generation reconstruction algorithms can pro-
duce much better image quality from a limited number of
projections than it is possible now, and it should be under-
stood that the invention would include variations in the use of
such algorithms to improve image quality.

Another effective way to suppress image artifacts and/or
increase the FOV is to use detectors in a time-sharing fashion
which can also be referred to as a source-multiplexing
scheme. Similar to the Hadamard multiplexing method devel-
oped by Dr. Otto Zhou’s group (Zhang, J., et al. Hadamard
multiplexing radiography based on carbon nanotube field
emission multi-pixel x-ray technology. Proceedings of SPIE,
Vol. 6913, Article ID: 691317, 2008), we can arrange pxq
x-ray focal spots around a subject, along with the correspond-
ing detectors. Under the computer control, we can electroni-
cally trigger p x-ray sources simultaneously for q times to
produce projection data continuously on its associated detec-
tors. In this way, each detector will be used by q x-ray focal
spots in q consecutive time slots. Note that this method can
not only improve image quality but also avoid the conflict
between the ROI size and number of focal spots that are on at
the same time.

This source-multiplexing idea is illustrated in FIG. 16a,
along with a realistic simulation (FIGS. 166-¢) where 290
x-ray sources were assumed to illustrate an ROI ofradius 30.9
mm by setting q=10 for the gantry of radius 570 mm. While
this multiplexing scheme is not instant, it can acquire a com-
plete dataset at speed 1-2 orders of magnitude faster than that
of the state-of-the-art CT scanner.

Two attractive time-sharing/multiplexing designs are
shown in FIG. 17, where we use three line-source segments
coupled by three detectors. The source-detector pairs are
shown in arrays surrounding an Object 10 to be scanned, with
a smaller ROI within Object 10. When the ROl is smaller and
closer to the iso-center of Object 10, the reconstruction qual-
ity is improved, since the stability of the solution to the
limited data problem would be higher in general. A known
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subregion within the ROI can be used as a landmark for image
reconstruction. X-ray sources are arrayed singly or in groups,
as represented by Source 12, which may be one or a plurality
of sources. Beam 14 is emitted from Source 12, and can be
emitted simultaneously or sequentially with other sources in
the the arrays surrounding Object 10. Beams can be truncated
limited-angle beams. Beam 14 is detected by Detector 16, and
other beams can be detected simultaneously or sequentially
by detectors that are placed in opposing positions to other
beams emitted by the array of sources. The data acquired by
Detector 16 from the projection of Beam 14 is transmitted to
Computer 18 for computational analysis and integration. The
integrated data is used to reconstruct Digital Image 20, which
can be visualized on a computer screen or other electronic
device. An alternative configuration source-detector pairs is
shown in FIG. 17B. These designs can be easily implemented
using off the shelf components. Then, ultrafast tomography
can be achieved within an ROI using our disclosed limited-
angle interior reconstruction approach.

While the presented results showing the feasibility of inte-
rior/instant tomography are encouraging, a critical examina-
tion indicates that the current interior tomography technology
is not perfect, as evidenced by the lack of details and residual
artifacts in the peripheral region in the interior reconstruction.
This sub-optimal performance is due to the fact that the sta-
bility analysis of the current interior tomography technique
reveals that the reconstruction error would increase further
away from the sub-region on which we have exact knowl-
edge. Certainly, there are opportunities to improve the image
quality using more advanced algorithms and it should be
understood that the invention would include variations in the
use of such algorithms to improve image quality. A more
detailed analysis of the x-ray dose associated with instant
tomography is also needed. For example, one needs to posi-
tion the “imaging window” of instant tomography inside the
organ of interest. If this organ is moving (e.g., in cardiac
applications) and the window is sufficiently small, significant
dose could be wasted on accidental imaging outside of the
target area. However, if we are roaming the ROI around in the
patient, much of these “wasted margins™ for one ROI can be
effectively utilized for other ROIs. For that purpose, we can
develop a deformable model and registration approach. Actu-
ally, both tremendous biomedical imaging needs for interior
tomography and this type of flaws in image quality and dose
utilization with interior tomography indicate potentials to
advance this new area and capitalize its major benefits in
clinical/preclinical and other applications.

One may worry that the scatter with the multi-source inte-
rior tomography system would be extremely high. Actually,
this is not the case. Briefly speaking, the larger the number of
sources is (which is typically odd), the narrower each x-ray
beam (7/N), and the smaller the FOV. Clearly, the scatter in
the data is roughly proportional to the product of the number
of sources and the beam width (which is proportional to the
size of the FOV). Thus, the scatter to primary ratio cannot go
infinite as the number of sources is increased, since basically
the beam width is inversely proportional to the number of
sources. Also, detector collimation can be used to reject scat-
tered photons, and electronic multiplexing can be added to
turn these x-ray sources on and off selectively and rapidly, if
scattering needs to be minimized. Furthermore, the dose to
the patient (inside and outside the ROI) from N truncated
projections is smaller (in the ROI) or much smaller (outside
the ROI) than that from N non-truncated projections.

Interior/instant tomography is highly desirable in a number
of disciplines. Let us comment on a few of such examples.
First, instant tomography may revolutionize cardiac CT. Car-
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diovascular diseases are pervasive, producing high mortality
and morbidity at tremendous social and healthcare costs (ww-
w.americanheart.org). Current cardiovascular research aims
to improve our understanding of the pathobiology and genet-
ics of coronary artery diseases. Cardiac CT has emerged as a
promising tool for noninvasive coronary angiography (see
Naghavi, M., et al, From vulnerable plaque to vulnerable
patient—A call for new definitions and risk assessment strat-
egies: Part I. Circulation, 2003. 108(14): p. 1664-1672).
Electron-beam CT was the first dedicated cardiac CT modal-
ity with temporal resolution as low as 50 ms, but it has
essentially become obsolete largely because of major limita-
tions in spatial and contrast resolution. State-of-the-art medi-
cal CT scanners can achieve temporal resolution of 100 ms.
However, given the rate and magnitude of the cardiac motion,
temporal resolution should ideally be <10 ms for humans and
<2 ms for small animals such as rats and mice. Achieving
these resolutions have been extremely challenging. Our inte-
rior tomography approach makes an instantaneous snapshot
of an ROI to assess the calcium burden and vascular stenoses,
to identify positive remodeling and plaque consistency, etc.,
especially in cases of high/irregular heart rates, contrast-en-
hanced CT scans and small animal studies.

Second, instant tomography may enable clinical and pre-
clinical micro-CT such as for inner ear imaging (see Wang, G,
etal, Design, analysis and simulation for development of the
first clinical micro-CT scanner. Academic Radiology, 2005.
12(4): p. 511-525). Two major obstacles in achieving such
fine spatial resolution in vivo are physiological motion blur-
ring (the smaller the imaging scale, the more significant the
physiological motion in an order of millimeter) and radiation
dose limitation (the finer the resolution, the greater the radia-
tion dose). When an x-ray beam is defined by a small ROl and
projections are acquired in parallel, both of the above two
issues are effectively addressed at the same time, which may
help derive image-based biomarkers for many applications in
diagnosis and therapy. Similarly, the ability to reconstruct
exactly a small ROl inside a larger object with a narrow x-ray
beam is essential to advancing nano-medicine development.
The state-of-the-art nano-CT scanners allow an FOV of ~20
pum?®. To image a nano-medicine specimen, the current tech-
nology requires sectioning it into a small segment down to the
size of the FOV. Actually, at the 8 keV energy of nano-CT,
organs/tissues of interest have over 1 mm attenuation length
(see Wang, Y. X., W. B. Yun, and C. Jacobsen, Achromatic
Fresnel optics for wideband extreme-ultraviolet and X-ray
imaging. Nature, 2003. 424(6944): p. 50-53), suggesting that
samples of several mm thickness can be examined without
sectioning. Hence, interior tomography is capable of imaging
deeply embedded nano-structures non-invasively to maintain
specimen integrity and hydration, minimize radiation dam-
age and image artifacts, as well as reduce operation time and
system cost. That is, interior tomography will provide a
freshly new way to study cellular and molecular features of
nano-medicine specimens in their native states.

Third, biomedical interior tomography of the lung, heart,
head, and neck can dramatically reduce CT radiation expo-
sure to a patient. This is highly desirable, particularly in
screening, perfusion and follow-up studies because of the
heated public debate surrounding a recent high-profile article
on the rapid growth of CT use and its associated radiation
risks (see Brenner, D. J. and E. J. Hall, Current concepts—
Computed tomography—An increasing source of radiation
exposure. New England Journal of Medicine, 2007. 357(22):
p. 2277-2284). Statistical methods for interior tomography
can reduce the radiation dose further.
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In the above and other scenarios, interior tomography is a
powerful, even necessary, tool to reduce radiation dose (no
x-rays go outside the ROI), suppress scattering artifacts (no
interference or cross-talk from radiation outside the ROI),
refine image quality (by the new reconstruction approach and
exact prior knowledge), handle large objects (measurement
can be localized in any direction), decrease engineering cost
(with smaller detectors and more compact system design),
increase system functionalities (with more flexible architec-
tures), boost scanner throughput (due to minimized and accel-
erated data flows), and achieve ultrafast or instant tomogra-
phy (using many source-detector pairs).

The invention claimed is:

1. The method for limited-angle interior tomography, com-
prising the steps of:

a) identify a region of interest (ROI) in an object;

b) measure truncated differences of Hilbert transform data

through the ROI where the data are defined by the equa-
tion

ds + G-

2 d
— Dg(s, P— hy
fSl ah £ (s, Y(8) + hy'(5)) "

Dy(sz, P=y(s2)) = Dyg(s1, P=y(s1)) =

1 P10 1 P10
z—PVf P10 4, —Pvf [P0,
n % t n A r

where f is the object function representing the linear
attenuation coefficient, D; is the measured projection
data, PV represents the principal value, y(s),
$;=5=s,, is a scanning curve, P is a point in the ROI,
and 0, is a unit vector from y(s)) to P;

¢) determine or acquire a linear attenuation coefficient
distribution of a subregion in the ROI;

d) reconstruct the ROI according to measured truncated
differences of Hilbert transform data and said linear
attenuation coefficient property for said subregion.

2. The method of claim 1 wherein the said limited scanning
angle is less than 180 degrees for some regions, and is 180
degrees for the other regions.

3. The method of claim 1 wherein said subregion is a single
point.

4. The method of claim 1 wherein said subregion is a
collection of sampling points.

5. The method of claim 1 wherein said subregion is less
than 5% the size of said ROI.

6. A method of performing interior tomography of a region
ofiinterest (ROI) in a parallel-fashion using an interior tomog-
raphy, comprising the steps of:

a) simultaneously or sequentially probing an ROI with
multiple x-ray or similar beams at multiple angles
extending through a said ROI and collecting data from
said multiple x-ray beams;

b) identifying a linear attenuation coefficient distribution
for at least one sub-region in said ROI; and

¢) using an interior tomography algorithm to reconstruct
the ROL.

7. The method of claim 6 wherein said step of simulta-
neously or sequentially probing is performed using a series of
sources and detectors which encircle a body in which the ROI
is located.

8. The method of claim 6 wherein said step of identifying
an ROl uses a scan of'a body containing said ROI taken before
said step of simultaneously probing, and includes the step of
identifying one or more of air gaps or voids, water, blood or
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other liquid, or other calibrated structures including implants,
or a known sub-region, or also including acquisition of other
forms of knowledge such as low-resolution version of the
ROI or a super set of the ROL.

9. The method of claim 6 wherein said ROI is a portion of
a heart, an ear, or of bony structures in a patient.

10. The method of claim 6 further comprising the step of
moving/roaming said ROI to a new location within a body by
moving said body within a tomographic system or by moving
said tomographic system relative to said body and repeating
steps a-C.

11. The method of claim 6 wherein limited angle interior
tomography is used, said limited angle interior tomography
including the steps of:

a) identify a region of interest (ROI) in an object;

b) measure truncated differences of Hilbert transform data

through the ROI where the data are defined by the equa-
tion

ds +

2 o
—Dy(s, P— By
L i P )|

Dy(sz, P=y(s2)) = Dy(s1, P=y(s1)) =

1 P-1f 1 P10
z—PVf 1Pt m——Pvf P10 4,
s = 7 s = 7

where f is the object function representing the linear
attenuation coeflicient, D is the measured projection
data, PV represents the principal value, y(s),
s, =s5=s,, is a scanning curve, P is a point in the ROI,
and 6, is a unit vector from y(s,) to P:
¢) determine or acquire a linear attenuation coefficient
distribution of a subregion in the ROI;
d) reconstruct the ROI according to measured truncated
differences of Hilbert transform data and said linear
attenuation coefficient for said subregion.

12. The method of claim 6 wherein limited angle interior
tomography is used, said limited angle interior tomography
including the steps of:

a) identify a region of interest (ROI) in an object;

b) measure truncated Hilbert transform data defined by

_ 1PV 2 dx "
s = 2PV [ s,

ye(c3, c4),c1 <c3<cs<cqg<Cr

where f is the object function representing the linear
attenuation coefficient, H; represent Hilbert trans-
form, PV represents the principal value, (¢, c,) is an
object support, (c;, c,) is a segment in said ROL (c;,
¢5) is a known portion in the segment, and the interior
reconstruction is performed using SVD or similar
techniques.

¢) determine or acquire a linear attenuation coefficient for
a subregion of the ROI;

d) reconstruct the ROI according to singular value decom-
position using said linear attenuation coefficient for said
subregion.

13. A system for performing interior tomography of a

region of interest (ROI), comprising:
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a) a plurality of x-ray source and detector pairs for simul-
taneously or sequentially probing an ROI with multiple
x-ray beams at multiple angles extending through said
ROI;

b) a computer for collecting data from said multiple x-ray
beams obtained from said detectors which uses an inte-
rior tomography algorithm to reconstruct the ROI using
a linear attenuation coefficient that is known for at least
one sub-region in said ROI that is of'a non-zero measure.

14. The method for limited angle interior tomography,

comprising the steps of:

b) identify a region of interest (ROI) in an object;

b) measure truncated Hilbert transform data defined by

_ 1PV 2 dx "
s =2y [ 1 = oo

ye(c3,c4),c1 <c3<c5<cqg <y

where f is the object function representing the linear
attenuation coefficient, H; represent Hilbert trans-
form, PV represents the principal value, (¢, c,) is an
object support, (c5, ¢,) a segment in said ROI, (c;, ¢5)
is a known portion in the segment, and the interior
reconstruction is performed using SVD or similar
techniques.
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¢) determine or acquire a linear attenuation coefficient for
a subregion of the ROI;

d) reconstruct the ROI according to singular value decom-
position using said linear attenuation coefficient for said
subregion.

15. The method of claim 14 wherein the objective function

is a regularization scheme defined by

N . - 2
Ay = argmin(|[B — H, A, |l + EXILA,IP)
Ay

where L and £ are a regularization constraint and a relaxation
coefficient respectively, and the remaining constituents are
derived from a Hilbert transform, which can be augmented by
projection transform data, represented as B=HA , where H is
a coefficient matrix corresponding to the Hilbert transform
kernel, and A is divided into the known and unknown parts A,
and A,, and H is divided into H, and H, such that
B=B-H,A,=H,A, alinear inversion problem, and because all
the rows of H,, are formed by the truncated discrete Hilbert
transform kernel (if it is augmented by the projection data, the
projection transform coefficients are also assumed known),
one can utilize the properties of H,, to solve the unknown A,
from the known B.
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